
A Programming and Execution Environment for Distributed
Multi Agent Systems �

John R. Graham, Daniel McHugh, Foster McGeary,
M. Victoria Windley, David Cleaver, Keith S. Decker

University of Delaware
Newark, DE, 19716, USA

fgraham,mchugh,mcgeary,windley,cleaver,decker g@cis.udel.edu

ABSTRACT
Before the powerful agent programming paradigm can be adopted
in commercial or industrial settings, a complete environment, sim-
ilar to that for other programming languages must be developed.
This includes, editors, libraries, and an environment for the com-
pletion of agent tasks. The DECAF[8] Agent architecture is a gen-
eral purpose agent development platform that was designed specif-
ically to support concurrency, distributed operations, support for
high level programming paradigms and high throughput. The archi-
tecture has been designed with built-in scalability which adapts it-
self to multiple processor architecture and highly distributed multi-
agent systems. DECAF supports research efforts in planning and
scheduling with modular design. The architecture also supports
application development and has current developments in social
modeling, middle agents, information extraction and proxy oper-
ations. DECAF also supports the next step in the progression of
the programming paradigm by allowing “flexible” and “structured
persistent” actions [7]. This paper is a case study of the develop-
ment of the DECAF architecture, tools that have been developed
concurrently to support programming and testing, and some of the
more significant applications designed using DECAF.

1. INTRODUCTION
Providing an environment for the execution of a software agent is
very similar to building an operating system for the execution of
general purpose applications. In the same fashion that an operat-
ing system provides a set of services for the execution of a user
request, an agent framework provides a similar set of services for
the execution of agent actions. Such services include the ability
to communicate with other agents, maintaining the current state of
an executing agent, and selecting an execution path from a set of
possible execution paths.

Agent systems are composed of a collection of autonomous units
that have local information and local capabilities. In multi agent
�This material is based upon work supported by the National Sci-
ence Foundation under Grant No. IIS-9812764.

systems, local information and goals are normally insufficient to
achieve larger goals independently. To support the achievement of
larger, non-local goals, agents must communicate and exchange in-
formation with other agents. This scenario of solving problems im-
poses design constraints which an agent architecture must support
in order to be effective.Communication. Agents are distributed
across networks and need to communicate.Concurrency. Concur-
rent activities are essential for an architecture in order to improve
the availability of its services. Working on task solutions at the
same time as processing incoming messages, for example.Lan-
guage Support. Agent programming includes all of the usual pro-
gramming paradigms as well the extensions that make agent pro-
gramming unique such as flexible actions.Testability. Repeatabil-
ity is essential for designing solutions to complex tasks.

There are two major design features of DECAF that support these
design constraints. First, DECAF consists of a set of well defined
control modules (initialization, dispatching, planning, scheduling,
execution, and coordination) that work in concert to control an
agent’s life cycle. Each of the modules is implemented as a sep-
arate thread in Java. Secondly, there is one core task structure rep-
resentation that is shared between all of the control modules. The
task structure can be annotated and expanded as needed with de-
tails that may be understood by only one or two modules, but there
is still one core representation.

In addition, a separate goal of the architecture is to develop a mod-
ular platform suitable for our research activities. DECAF distin-
guishes itself from many other agent toolkits by shifting the focus
away from the underlying components of agent building such as
socket creation, message formatting, and the details of agent com-
munication to allow agent developers to focus on the logic of the
task or in the case of research, allowing focus on one particular
aspect of the architecture.

In support of these goals a set of tools has evolved to assist pro-
grammers and researchers; Component libraries, GUI program-
ming, Agent Management Agent (AMA) and middleware (ANS
(agent name server), Matchmaker and Broker). The remainder of
this paper will briefly discuss each of the control modules and the
support tools. Lastly an overview of the research projects and ap-
plications that have been developed using DECAF.

2. THE DECAF ARCHITECTURE
DECAF (Distributed, Environment-Centered Agent Framework) is
a toolkit which allows a well-defined software engineering approach

to building multi-agent systems. The toolkit provides a stable plat-
form to design, rapidly develop, and execute intelligent agents to
achieve solutions in complex software systems. DECAF provides
the necessary architectural services of a large-grained intelligent
agent [5, 14]: communication, planning, scheduling, execution mon-
itoring, coordination, and eventually learning and self-diagnosis
[9]. This is essentially the internal “operating system” of a soft-
ware agent, to which application programmers have strictly limited
access. The overall internal architecture of DECAF is shown in
Figure 1.

2.1 Agent Initialization
The execution modules control the flow of a task through its life
time. After initialization, each module runs continuously and con-
currently in its own Java thread. When an agent is started, theAgent
Initialization module will run. The agent initialization module will
read the plan file as described above. Each task reduction specified
in the plan file will be added to theTask Templates Hash table(plan
library) along with the tree structure that is used to specify actions
that accomplish that objective.

2.2 Dispatcher
Agent initialization is done once and then control is passed to the
Dispatcher which waits for an incoming KQML (or FIPA) mes-
sage. These messages will then be placed on theIncoming Mes-
sage Queue. An incoming message contains a KQMLperformative
and its associated information. An incoming message can result in
one of two actions by the dispatcher. First the message is attempt-
ing to communicate as part of an ongoing conversation. The Dis-
patcher makes this distinction mostly by recognizing the KQML
:in-reply-to field designator, which indicates the message is
part of an existing conversation. In this case the dispatcher will find
the corresponding action in thePending Action Queueand set up
the tasks to continue the agent action.

Second, a message may indicate that it is part of a new conver-
sation. This is the case whenever the message does not use the
:in-reply-to field. If so a newobjectiveis created (equiva-
lent to the BDI “desires” concept[12]) and placed on theObjec-
tives Queuefor the Planner. An agent typically has many active
objectives, not all of which may be achievable.

2.3 Planner
The Planner monitors the Objectives Queue and matches new goals
to an existing task template as stored in the Plan Library. A copy
of the instantiated plan, in the form of an HTN corresponding to
that goal, is placed in theTask Queuearea, along with a unique
identifier and any provisions that were passed to the agent via the
incoming message. If a subsequent message comes in requesting
the same goal be accomplished, then another instantiation of the
same plan template will be placed in the task networks with a new
unique identifier. The Task Queue at any given moment will con-
tain the instantiated plans/task structures (including all actions and
subgoals) that should be completed in response to an incoming re-
quest.

2.4 Scheduler
TheSchedulerwaits until the Task Queue is non-empty. The pur-
pose of the Scheduler is to determine which actionscanbe executed
now, whichshouldbe executed now, and in what order they should
be executed. This determination is currently based on whether all

of the provisions for a particular module are available. Some provi-
sions come from the incoming message and some provisions come
as a result of other actions being completed. This means the Task
Queue Structures are checked any time a provision becomes avail-
able to see which actions can be executed now.

A major research effort is underway to add reasoning ability to
the scheduling module. This effort involves annotating the task
structure with performance and scheduling information to allow the
scheduler to select an “optimal” path for task completion. Optimal
in this case may mean some definition of quality or deadline and
real-time goals.

2.5 Executor
TheExecutoris set into operation when the Agenda Queue is non-
empty. Once an action is placed on the queue the Executor imme-
diately places the task into execution. One of two things can occur
at this point: The action can complete normally (Note that “nor-
mal” completion may be returning an error or any other outcome)
and the result is placed on theAction Result Queue. The frame-
work waits for results and then distributes the result to downstream
actions that may be waiting in the Task Queue. Once this is accom-
plished the Executor examines the Agenda queue to see if there
is further work to be done. The Executor module will start each
task in its own separate thread improving throughput and assisting
the achievement of the real-time deadlines. Alternatively, an action
may fail and not return, in which case the framework will indicate
failure of the task to the requester.

3. ARCHITECTURE DEVELOPMENT
Currently, DECAF is being used as a research platform for some
classical AI problems in scheduling and planning. The following
sections briefly describe these research efforts.

3.1 Scheduling
DECAF supports the idea of “soft” real time execution of tasks.
To achieve this, the concept of execution profiles and a character-
ization of agent execution that will lead to optimal or near opti-
mal scheduling of agent execution has been developed. This work
is leveraged from the Design to Criteria (DTC) work at the Uni-
versity of Massachusetts [15]. Using the agent execution profile
and characterization, Currently, DECAF can be run with a simple
non-reasoning scheduler or with the DTC scheduler. Under devel-
opment is DRU (Dynamic Realtime Update), a scheduler that is
faster than DTC and improves reliability by taking advantage of
the Java Virtual Machine (JVM) to run redundant efforts to achieve
deadlines in the event of failure of the primary solution.

3.2 GPGP
Generalized Partial Global Planning (GPGP) is a task structure cen-
tered approach to coordination [3]. The basic idea is that each
agent constructs its local view of the structure and relationships
of its intended tasks. This view is then augmented by information
from other tasks and the local view will change dynamically over
time. In particular, commitments are exchanged that result in new
scheduling constraints. The result is a more coordinated behavior
for all agents in the community.

3.3 Planning
The focus of planning in our system is on explicating the basic in-
formation flow relationships between tasks and other relationships
that affect control flow decisions. Most control relationships are

Agent
Initialization

DECAF Task and Control Structures

Plan File Incoming KQML messages

Domain Facts and Beliefs

KQML Messages
Outgoing Action Modules

Hashtable Action Queue
Pending

Results Queue
Action

Dispatcher Planner Executor

Message Queue
Incoming

Queue
Objectives

Queue
Task

Queue
Agenda

Scheduler

Task Templates

Figure 1: DECAF Architecture Overview

derivative of these more basic relationships. Final action selection,
sequencing and timing are left up to the agent’s local scheduler.
Thus the planning process takes as input the agent’s current set of
goals and set of task structures and produces as output a new set
of current task structures. The important constraint on the planning
module is to guarantee at least one task for each goal until the goal
is accomplished or until the goal is believed to be unachievable.

Special features of the planner include the ability to plan for pre-
conditions and plan to achieve abstract predicate goals (instead of
decomposition by task names). The planner also designs plans to
allow runtime choices between branches to be made by an intelli-
gent scheduler, based on user preferences that can change between
plan time and runtime. This feature provides real time flexibility,
since the scheduler can react to a dynamic environment by exploit-
ing choice within a plan, rather than forcing the planner to do costly
replanning.

4. AGENT DEVELOPMENT TOOLS

4.1 Plan Editor
The control or programming of DECAF agents is provided via an
ASCII Plan File written in the DECAF programming language.
The plan file is created using a GUI interface called thePlan-Editor.
In the Plan-Editor, executable actions are treated as basic build-
ing blocks which can be chained together to achieve a larger more
complex goal in the style of an HTN (hierarchical task network).
This provides a software component-style programming interface
with desirable properties such as component reuse (eventually, au-
tomated via the planner) and some design-time error-checking. The
chaining of activities can involve traditional looping and if-then-
else constructs. This part of DECAF is an extension of the RET-
SINA and TÆMS task structure frameworks [16, 2].

The DECAF Plan-Editor attaches to each action a performance pro-
file which is then used and updated internally by DECAF to provide
real-time local scheduling services. The reuse of common agent be-
haviors is thus increased because the execution of these behaviors
does not depend only on the specific construction of the task net-
work but also on the dynamic environment in which the agent is
operating.

For example, a particular agent may be “persistent”, or “flexible”
[17] meaning the agent will attempt to achieve an objective, possi-
bly via several approaches, until a result is achieved. This construc-
tion also allows for a certain level of non-determinism in the use of
the agent action building blocks. Figure 2 shows a PE session.

The PE facilitates code generation in multiple languages through
the use of a common data structure, thePEComponentData. A
PEComponentData is created to represent each object in a Plan
File (tasks, actions and non-local actions). This representation is
independent of any particular language and is easily used to gener-
ate any output language. Currently the PE can generate compilable
Java code, the DECAF Language, and TÆMS. This process is eas-
ily be replicated for generation of any language by creating a new
Java method to translate the PEComponentData into another source
language.

4.2 Agent Construction
One of the major goals of building the DECAF framework is to
enable very rapid development of agent actions and task struc-
tures. This is accomplished by removing the agent interaction de-
tails from the programmers hands. The developer does not need
to write any communications code, does not have to worry about
multiple invocations of the same agent, does not have to parse and
schedule any incoming messages, and does not have to learn any

Figure 2: Sample PE Session

Application Programmer Interface (API) in order to write and pro-
gram an agent under the DECAF architecture. Note that since the
Plan File incorporates all of the data flow of an agent, the pro-
grammer does not have to write code for data flow between actions
either.

The plan file represents the agent programming and each leaf node
of the program represents a program that the user must write. The
DECAF language supports all of the usual programming constructs
such as selection and looping, but it also supports the idea of “struc-
tured persistent actions”. One feature of an agent oriented approach
to problem solving is the ability to describe in broad terms the
method for achieving a goal. The programmer does not have to
build from scratch an explicit solution, rather they can build an en-
capsulation that continuously tries for success without accounting
for all possible conditions. For example, to look up a quote for a
stock may require may queries to many price databases. The pro-
grammer does not have be concerned with details of which database
is used or what remote format the data is in, only that eventually the
price will be returned or that the price is not available.

The PE session in Figure 2 demonstrates some important program-
ming concepts built into DECAF. In this case the task is named
“Send”. Generically this task will format a KQML message, send it
to the designated recipient and await the response. There are three
actions the programmer must write and all the rest is handled by
DECAF. If the “formatMsg” task fails, the failure is reported to the
“Failed” action which does the error processing and reports that the
task is complete. Otherwise, the message is sent to the cloud con-
struct. In DECAF the cloud represents a non-local action or task.
Internally the cloud takes cares of all communication, timeouts and
retries for message delivery and ultimately delivery of the response
to the downstream action. This is true if there is one message or a
stream of messages to be sent or received. All that remains for the
programmer is to process the replies.

4.3 Test Generation Tool
To properly test the DECAF architecture, it is necessary to gener-
ate random plan structures. However, simply generating random
structures is not enough. The test generation program for DECAF

allows random plan files to be created with certain features, that al-
low testing of different aspects of DECAF. These features include
the average depth of the tree, the average breadth, and the amount
of enablements within a tree level. With only a few minor parame-
ter changes, many different types of plan files can be quickly gen-
erated and used.

5. MIDDLEWARE
Middle agents support the flow of information in a MAS(Multi-
Agent System) community. They do not contribute directly to the
solution of the goal. For example, a middle agent that lists all of
the airlines traveling from New York to Chicago does not find you
a ticket for the trip. However, in order to get such a ticket, you need
the list of airlines. You could of course program such functionality
into your ticket finding program but it is easier to have such a list
available as a middle agent.

5.1 Agent Name Server
The current DECAF Agent Name Server is based on a version
in use at Carnegie-Mellon University. This is a stand alone pro-
gram with a fixed API which does the registration of agents. The
new DECAF ANS under development will be written as a DECAF
agent. This will allow interaction with the ANS through KQML
messages. It also allows new functionality to be easily added via
new task structures to a DECAF plan. To avoid excessive mes-
sage traffic and to maintain directories, the ANS agent will have
a known port and listen to simple socket connections from other
agents. Simple activities with the ANS, such as registering, un-
registering and looking up other agents can be handled by these
simple socket connections. These simple protocols and other more
complex ones can be handled through the normal message port of
the ANS. This design will lead to more complex behaviors by the
ANS. Agent Name Server Agents could register with each other,
and a protocol could be developed similar to DNS for finding an
agent’s location given it’s name as well as for increased security.

5.2 Matchmaker and Broker Agents
Two middle agents that have been developed using DECAF are
MatchmakerandBroker. The Matchmaker agent serves as a yellow
pages tool to assist agent in finding other agents in the community

that may provide a service useful for their tasks. An agent willad-
vertiseits capabilities with the Matchmaker and if those capabilities
change or are no longer available, the agent willunadvertise. The
Matchmaker stores the capabilities in a local database. A requester
wishing to ask a query will formulate the query to the Matchmaker
andask for a set of matching advertisements. The requester can
then and make request directly to the provider. A requester can also
subscribeto the Matchmaker and be informed when new services
or interest are added or removed.

A Broker agent advertises summary capabilities built from all of
the providers that have registered with one Broker. The Broker
in turn advertises with the Matchmaker. For example, one Broker
may have all the capabilities to build a house (plumber, electrician,
framer, roofer,: : :). The broker can now provide a larger service
than any single provider can, and often manage a large group of
agents more effectively.

5.3 Information Extraction Agent
The main functions of an information extraction agent (IEA) are
[4]: Fulfilling requests from external sources in response to aone
shot query(e.g. “What is the price of IBM?”). Monitoring external
sources forperiodic information (e.g. “Give me the price of IBM
every 30 minutes.”). Monitoring sources for patterns, calledinfor-
mation monitoringrequests (e.g. “Notify me if the price of IBM
goes below $50.”).” These functions can be written in a general
way so that the code can be shared for agents in any domain.

Since our agent operates on the Web, the information gathered is
from external information sources.The agent uses a set ofwrap-
persand the wrapper induction algorithm STALKER [10], to ex-
tract relevant information from the web pages. When the informa-
tion is gathered it is stored in the local IEA “infobase” using Java
wrappers on a PARKA [13] database/knowledgbase.

5.4 Proxy Agent
DECAF agent can communicate with any object that uses the KQML
or FIPA message construct. However, web browser applets cannot
(due to security concerns) communicate directly with any machine
except the applet’s server. The solution is aProxyagent. The Proxy
agent is constructed as a DECAF agent and uses fixed addresses
and socket communication to talk to Java applets or any applica-
tion. Through the Proxy agent, applications outside the DECAF or
KQML community have access to MAS Services.

5.5 Agent Management Agent
The Agent Management Agent (AMA) creates a graphical repre-
sentation of agents which are currently registered with the ANS,
as well as the communication between those agents. This allows
the user to have a concept of the community in which an agent
is operating as well as the capabilities of the agents and the inter-
action between agents. The AMA frequently queries the ANS to
determine which agents are currently registered. These agents are
then represented in a GUI. The AMA also queries the Matchmaker
to retrieve a profile provided by each agent. This profile contains
information about the services provided by an agent. This profile
is accessible to the AMA user by double-clicking on the agent’s
icon. In the future, the AMA will also have the capability of moni-
toring and displaying communications between these agents. Each
agent will send a message to the AMA whenever it communicates
with another agent, so that the user may then monitor all activity
between agents.

6. CURRENT DEVELOPMENT
6.1 Modeling with the Virtual Food Court
Virtual Food Court (VFC) is a small artificial economy. VFC mod-
els diners, workers, and entrepreneurs. These economic entities
are caricatures of the participants in transactions that take place
within a simplified shopping mall food court. Although carica-
tures, the entities exhibit behaviors, chosen from a repertoire of
self-interested behaviors, sufficient to allow VFC to contain a la-
bor market, markets for food service equipment, and markets for
food products. For example, accepting a contract to perform labor
and forming an organization (i.e., offering the labor contract) are
reciprocal events. Because both of these are voluntary actions, we
believe it necessary to model and explain both sides of the transac-
tion simultaneously. This is what we do in VFC, planning to extend
our results to model organizational structures more complicated
than a simple employment contract (while still, of course, basing
the analysis on the need for there to be reciprocally voluntary con-
tracts). We expect that such models will also have to be expanded
to include aspects of governance and perhaps non-economic social
forces as we explore the long term control and stability of such
structures.

The initial configuration of VFC is shown in figure 3 as a collection
of boxes and lines. Lines represent the KQML communications and
the boxes are DECAF agents. Arrowheads indicate the direction
of the initial message. In the DECAF paradigm, agents need to
know of the Matchmaker in order to register their existence with
it. Workers and Restaurants need to know of the existence of the
Government because they are “required” to report to it.

Government

Matchmaker

MenuTechnologies

Restaurant

Diner

Preferences

Inventory

Employees
Worker

Last Resort Supplier

Food Data Agency

Figure 3: Virtual Food Court Architecture

6.2 GeneAgent
GeneAgent is a bioinformatics-gathering system based on the RET-
SINA agent organizational concept of Interface Agents that work
with humans, Information Extraction Agents that wrap various web
resources, and Task Agents that include both middle-agents and
domain task analysis agents. GeneAgent interfaces with a biolo-
gist via a browser and applets that use the DECAF Proxy Agent
to communicate with the rest of the information gathering sys-
tem. The Information Extraction Agent class has been used to build
wrappers for several necessary Internet resources such as the NCBI

BLAST servers that allow searching for protein sequences in Gen-
Bank; Protein Motif (sequence pattern) databases such as Swis-
sProt, and local databases of organism-specific genetic sequences.
Initial analysis agents provide services such as notification of new
BLAST results and automated customized annotation of local ge-
netic sequence information. Figure 4 shows the basic architecture
of GeneAgent.

SwissProt, Prosite Local Sequence DBGenbank

Local Wrapper

Web
Applet Proxy

Matchmaker

Browser

TAIR Wrapper Quantitative Trait
Loci Analysis Agent

Motif Pattern
Analysis AgentArabidopsis Microarray Data

Protein ID
Monitoring Agent

User

Email

Motif-finderBLAST Agent

Figure 4: GeneAgent Architecture

7. CONCLUSIONS AND FUTURE WORK
Currently the most widely used agent development approaches use
the “toolkit” concept. Meaning there is an API that the program-
mer must use to completely build the agent task. Also, there is no
convenient representation in a language or GUI that can be writ-
ten to program the agent.JATlite from Stanford University and
Bondfrom Purdue University are good examples of this approach.
DESIRE[1] and ConCurrent METAtem[6] are language formal-
izations but they must be developed by hand and do not allow the
coordination mechanisms specified by DECAF and TÆMS. ZEUS
[11] is an example of such an extended framework similar to DE-
CAF. ZEUS is a collection of tools (primarily visual) that assist
the agent developer in building agent code. As a complete collec-
tion of tools it is somewhat more advanced than DECAF. However,
ZEUS allows only very simple coordination specification between
agents components and does little or no reasoning about agent ac-
tion scheduling or planning.

DECAF is currently the basis for several AI projects and projects
involving organizational development and bioinformatics informa-
tion gathering. It has also been used as a programming tools for
graduate level classes on agent development.

8. ACKNOWLEDGMENTS
Primary development of DECAF was done by John Graham with
extensive improvement by Mike Mersic. Development of the VFC
was by Foster McGeary. The Test Generation Tool was developed
by David Cleaver. The PE GUI and code generation was developed
by Daniel McHugh and Victoria Windley.

9. REFERENCES
[1] F. M. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and

J. Treur. Desire: Modeling multi-agent systems in a
compositional formal framework.International Journal of
Cooperative Information Systems, 6(1), 1997.

[2] K. S. Decker and V. R. Lesser. Quantitative modeling of
complex computational task environments. InProceedings of

the Eleventh National Conference on Artificial Intelligence,
pages 217–224, Washington, July 1993.

[3] K. S. Decker and V. R. Lesser. Designing a family of
coordination algorithms. InProceedings of the First
International Conference on Multi-Agent Systems, pages
73–80, San Francisco, June 1995. AAAI Press. Longer
version available as UMass CS-TR 94–14.

[4] K. S. Decker, A. Pannu, K. Sycara, and M. Williamson.
Designing behaviors for information agents. InProceedings
of the 1st Intl. Conf. on Autonomous Agents, pages 404–413,
Marina del Rey, Feb. 1997.

[5] K. S. Decker and K. Sycara. Intelligent adaptive information
agents.Journal of Intelligent Information Systems,
9(3):239–260, 1997.

[6] M. Fisher. Introduction to concurrent metatem. 1996.

[7] L. Gasser. Agent and concurrent objects.An interview by
Jean-Pierre Briot in IEEE Concurrency, 1998.

[8] J. R. Graham and K. S. Decker. Towards a distributed,
environment-centered agent framework. In N. Jennings and
Y. Lespérance, editors,Intelligent Agents VI — Proceedings
of ATAL-99, Lecture Notes in Artificial Intelligence.
Springer-Verlag, Berlin, 2000.

[9] B. Horling, V. Lesser, R. Vincent, A. Bazzan, and P. Xuan.
Diagnosis as an integral part of multi-agent adaptability.
Tech Report CS-TR-99-03, UMass, 1999.

[10] I. Muslea, S. Minton, and C. Knobloch. Stalker: Learning
expectation rules for simistructured web-based information
sources. Papers from the 1998 workshop on ai and
information gathering. technical report ws-98-14, University
of Southern California, 1998.

[11] H. S. Nwana, D. T. Ndumu, L. C. Lee, and J. C. Collis.
ZEUS: A toolkit for building distributed multi-agent
systems. (6), 1998.

[12] A. Rao and M. Georgeff. BDI agents: From theory to
practice. InProceedings of the First International
Conference on Multi-Agent Systems, pages 312–319, San
Francisco, June 1995. AAAI Press.

[13] L. Spector, J. Hendler, and M. P. Evett. Knowledge
representation in parka. Technical Report CS-TR-2410,
University of Maryland, 1990.

[14] K. Sycara, K. S. Decker, A. Pannu, M. Williamson, and
D. Zeng. Distributed intelligent agents.IEEE Expert,
11(6):36–46, Dec. 1996.

[15] T. Wagner, A. Garvey, and V. Lesser. Criteria-Directed Task
Scheduling.International Journal of Approximate
Reasoning, Special Issue on Scheduling, 19(1-2):91–118,
1998. A version also available as UMASS CS TR-97-59.

[16] M. Williamson, K. S. Decker, and K. Sycara. Unified
information and control flow in hierarchical task networks.
In Proceedings of the AAAI-96 workshop on Theories of
Planning, Action, and Control, 1996.

[17] M. Wooldridge and N. Jennings. Intelligent agents: Theory
and practice.Knowledge Engineering Review, October, 1994.

